您当前的位置:首页 > 电脑百科 > 程序开发 > 算法

K-最近邻算法(KNN)

时间:2023-09-27 13:44:39  来源:  作者:小魏玩编程

K-最近邻算法(K-Nearest Neighbor,KNN)是一种经典的有监督学习方法,也可以被归为懒惰学习(Lazy Learning)方法。它基于“物以类聚”的原理,假设样本之间的类别距离越近则它们越有可能是同一类别。

KNN算法的工作原理简单且直观,当需要将一个测试样本分类时,它首先会计算测试样本与所有训练样本之间的距离,然后根据距离的递增关系进行排序。接着,它会选择距离最小的前K个样本,并统计这K个最近邻样本中每个样本出现的次数。最后,它会选择出现频率最高的类标号作为未知样本的类标号。

在KNN算法中,K值的选择是关键。如果K值较小,只有当需要进行预测的样本和训练的样本较接近时,才能有较好的效果。如果K值较大,则算法分类的近似误差增大,与输入样本距离较远的样本也会对结果产生作用。

K-最近邻算法(KNN)

KNN算法的工作过程如下:

1. 计算待分类样本与训练集中所有样本之间的距离,常用的距离度量方法包括欧氏距离、曼哈顿距离等。

2. 选择K个距离最近的样本,即K个最近邻。

3. 对于分类问题,统计K个最近邻中不同类别的样本数量,并将待分类样本归为数量最多的那个类别。

4. 对于回归问题,计算K个最近邻的平均值或加权平均值,并将其作为待分类样本的预测值。

KNN算法的优点是简单易理解、实现容易,并且对于非线性问题具有较好的表现。此外,KNN算法可以适应新的训练数据,不需要重新训练模型。KNN算法既能够用来解决分类问题,也能够用来解决回归问题。在处理分类问题时,KNN通过扫描训练样本集找到与测试样本最相似的训练样本,并依据该样本的类别进行投票确定测试样本的类别。在处理回归问题时,KNN则通过计算训练样本与测试样本的相似程度进行加权投票。

然而,KNN算法的缺点包括计算复杂度高,需要存储全部训练样本,对于大规模数据集会消耗较多的内存和时间。此外,KNN算法对于样本分布不平衡的情况可能产生偏见,并且对于高维数据和噪声数据的处理能力相对较弱。

需要注意的是,由于KNN算法需要计算所有训练样本与测试样本之间的距离,因此当训练样本集较大时,其计算成本会较高。为了解决这个问题,可以考虑使用一些优化的距离计算方法,如树结构算法等。同时,KNN算法的方差(Variance)往往较高,容易受到训练集大小和噪声的影响,因此在使用时需要注意过拟合和欠拟合的问题。

在应用方面,KNN算法常用于推荐系统、图像识别、医学诊断等领域。



Tags:近邻算法   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
K-最近邻算法(KNN)
K-最近邻算法(K-Nearest Neighbor,KNN)是一种经典的有监督学习方法,也可以被归为懒惰学习(Lazy Learning)方法。它基于“物以类聚”的原理,假设样本之间的类别距离越近则它们越有可...【详细内容】
2023-09-27  Search: 近邻算法  点击:(248)  评论:(0)  加入收藏
K近邻(knn)算法是如何完成分类的?
摘要:K近邻算法是机器学习中的一个非常基础的算法。本文通过自生成数据,通过绘图的方式演示KNN算法的思路,让你不看数学公式就看了解什么是KNN算法。关键词:KNN算法1 生成一个二...【详细内容】
2020-06-23  Search: 近邻算法  点击:(273)  评论:(0)  加入收藏
▌简易百科推荐
小红书、视频号、抖音流量算法解析,干货满满,值得一看!
咱们中国现在可不是一般的牛!网上的网友已经破了十个亿啦!到了这个互联网的新时代,谁有更多的人流量,谁就能赢得更多的掌声哦~抖音、小红书、、视频号,是很多品牌必争的流量洼地...【详细内容】
2024-02-23  二手车小胖说    Tags:流量算法   点击:(12)  评论:(0)  加入收藏
雪花算法详解与Java实现:分布式唯一ID生成原理
SnowFlake 算法,是 Twitter 开源的分布式 ID 生成算法。其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 ID。在分布式系统中的应用十分广泛,且 ID 引入了时间戳...【详细内容】
2024-02-03   一安未来  微信公众号  Tags:雪花算法   点击:(50)  评论:(0)  加入收藏
程序开发中常用的十种算法,你用过几种?
当编写程序时,了解和使用不同的算法对解决问题至关重要。以下是C#中常用的10种算法,每个算法都伴随着示例代码和详细说明。1. 冒泡排序 (Bubble Sort):冒泡排序是一种简单的比...【详细内容】
2024-01-17  架构师老卢  今日头条  Tags:算法   点击:(44)  评论:(0)  加入收藏
百度推荐排序技术的思考与实践
本文将分享百度在推荐排序方面的思考与实践。在整个工业界的推广搜场景上,特征设计通常都是采用离散化的设计,需要保证两方面的效果,一方面是记忆,另一方面是泛化。特征都是通过...【详细内容】
2024-01-09  DataFunTalk  微信公众号  Tags:百度推荐   点击:(73)  评论:(0)  加入收藏
什么是布隆过滤器?如何实现布隆过滤器?
以下我们介绍了什么是布隆过滤器?它的使用场景和执行流程,以及在 Redis 中它的使用,那么问题来了,在日常开发中,也就是在 Java 开发中,我们又将如何操作布隆过滤器呢?布隆过滤器(Blo...【详细内容】
2024-01-05  Java中文社群  微信公众号  Tags:布隆过滤器   点击:(87)  评论:(0)  加入收藏
面向推荐系统的深度强化学习算法研究与应用
随着互联网的快速发展,推荐系统在各个领域中扮演着重要的角色。传统的推荐算法在面对大规模、复杂的数据时存在一定的局限性。为了解决这一问题,深度强化学习算法应运而生。本...【详细内容】
2024-01-04  数码小风向    Tags:算法   点击:(89)  评论:(0)  加入收藏
非负矩阵分解算法:从非负数据中提取主题、特征等信息
非负矩阵分解算法(Non-negativeMatrixFactorization,简称NMF)是一种常用的数据分析和特征提取方法,主要用于从非负数据中提取主题、特征等有意义的信息。本文将介绍非负矩阵分解...【详细内容】
2024-01-02  毛晓峰    Tags:算法   点击:(62)  评论:(0)  加入收藏
再谈前端算法,你这回明白了吗?
楔子 -- 青蛙跳台阶一只青蛙一次可以跳上一级台阶,也可以跳上二级台阶,求该青蛙跳上一个n级的台阶总共需要多少种跳法。分析: 当n=1的时候,①只需要跳一次即可;只有一种跳法,即f(...【详细内容】
2023-12-28  前端爱好者  微信公众号  Tags:前端算法   点击:(107)  评论:(0)  加入收藏
三分钟学习二分查找
二分查找是一种在有序数组中查找元素的算法,通过不断将搜索区域分成两半来实现。你可能在日常生活中已经不知不觉地使用了大脑里的二分查找。最常见的例子是在字典中查找一个...【详细内容】
2023-12-22  小技术君  微信公众号  Tags:二分查找   点击:(78)  评论:(0)  加入收藏
强化学习算法在资源调度与优化中的应用
随着云计算和大数据技术的快速发展,资源调度与优化成为了现代计算系统中的重要问题。传统的资源调度算法往往基于静态规则或启发式方法,无法适应动态变化的环境和复杂的任务需...【详细内容】
2023-12-14  职场小达人欢晓    Tags:算法   点击:(164)  评论:(0)  加入收藏
相关文章
    无相关信息
站内最新
站内热门
站内头条