您当前的位置:首页 > 电脑百科 > 数据库 > 百科

HBase的二级索引种类和设计

时间:2022-10-15 15:31:01  来源:今日头条  作者:存储矩阵

0 HBase简介

HBase是一个构建在HDFS之上,用于海量数据存储分布式列存储系统。

  • 表的每行都是按照RowKey的字典序排序存储
  • 表的数据是按照RowKey区间进行分割存储成多个region

所以HBase主要适用下面这两种常见场景:

  • 适用于基于rowkey的单行数据快速随机读写
  • 适合基于rowkey前缀的范围扫描

1 为什么需要二级索引

HBase的一级索引就是rowkey,我们仅仅能通过rowkey进行检索。假设我们相对Hbase里面列族的列列进行一些组合查询,就只能全表扫描了。表如果较大的话,代价是不可接受的,所以要提出二级索引的方案。

二级索引的思想:简单理解就是,根据列族的列的值,查出rowkey,再按照rowkey就能很快从hbase查询出数据,我们需要构建出根据列族的列的值,很快查出rowkey的方案。

2 常见的二级索引方案

  1. MapReduce方案;
  2. Coprocessor方案;
  3. elasticsearch+hbase方案;
  4. Solr+hbase方案;

2.1 MapReduce方案

IndexBuilder:利用MR的方式构建Index 长处:并发批量构建Index 缺点:不能实时构建Index

举例: 原表:

row  1      f1:name  zhangsan
row  2      f1:name  lisi
row  3      f1:name  wangwu

索引表:

row     zhangsan    f1:id   1
row     lisi        f1:id   2
row     wangwu      f1:id   3

这种方式的思想是再构建一张hbase表,列族的列这里的name作为索引表的rowkey,根据rowkey查询出数据hbase是很快的,拿到id后,也就拿到了原表的rowkey了,因为源表的rowkey就是id,每次查询一共需要查询两张表。

2.2 Coprocessor方案

有关协处理器的讲解,Hbase官方文档是最好的,这里大体说一下它的作用与使用方法。

  1. Coprocessor提供了一种机制可以让开发者直接在RegionServer上运行自定义代码来管理数据。 通常我们使用get或者scan来从Hbase中获取数据,使用Filter过滤掉不需要的部分,最后在获得的数据上执行业务逻辑。但是当数据量非常大的时候,这样的方式就会在网络层面上遇到瓶颈。客户端也需要强大的计算能力和足够大的内存来处理这么多的数据,客户端的压力就会大大增加。但是如果使用Coprocessor,就可以将业务代码封装,并在RegionServer上运行,也就是数据在哪里,我们就在哪里跑代码,这样就节省了很大的数据传输的网络开销。
  2. Coprocessor有两种:Observer和Endpoint EndPoint主要是做一些计算用的,比如计算一些平均值或者求和等等。而Observer的作用类似于传统关系型数据库的触发器,在一些特定的操作之前或者之后触发。学习过Spring的朋友肯定对AOP不陌生,想象一下AOP是怎么回事,就会很好的理解Observer了。Observer Coprocessor在一个特定的事件发生前或发生后触发。在事件发生前触发的Coprocessor需要重写以pre作为前缀的方法,比如prePut。在事件发生后触发的Coprocessor使用方法以post作为前缀,比如postPut。 Observer Coprocessor的使用场景如下: 2.1. 安全性:在执行Get或Put操作前,通过preGet或prePut方法检查是否允许该操作; 2.2. 引用完整性约束:HBase并不直接支持关系型数据库中的引用完整性约束概念,即通常所说的外键。但是我们可以使用Coprocessor增强这种约束。比如根据业务需要,我们每次写入user表的同时也要向user_dAIly_attendance表中插入一条相应的记录,此时我们可以实现一个Coprocessor,在prePut方法中添加相应的代码实现这种业务需求。 2.3. 二级索引:可以使用Coprocessor来维持一个二级索引。正是我们需要的

索引设计思想

关键部分来了,既然Hbase并没有提供二级索引,那如何实现呢?先看下面这张图

 

我们的需求是找出满足cf1:col2=c22这条记录的cf1:col1的值,实现方法如图,首先根据cf1:col2=c22查找到该记录的行键,然后再通过行健找到对应的cf1:col1的值。其中第二步是很容易实现的,因为Hbase的行键是有索引的,那关键就是第一步,如何通过cf1:col2的值找到它对应的行键。很容易想到建立cf1:col2的映射关系,即将它们提取出来单独放在一张索引表中,原表的值作为索引表的行键,原表的行键作为索引表的值,这就是Hbase的倒排索引的思想。

虽然官方一直也没提供内置的支持二级索引的工具, 不过业界也有些比较知名的基于Coprocessor的开源方案:

  • 华为的hindex : 基于0.94版本,当年刚出来的时候比较火,但是版本较旧,看Github项目地址最近这几年就没更新过。
  • Apache Phoenix: 功能围绕着SQL on hbase,支持和兼容多个hbase版本, 二级索引只是其中一块功能。 二级索引的创建和管理直接有SQL语法支持,使用起来很简便, 该项目目前社区活跃度和版本更新迭代情况都比较好。

ApachePhoenix在目前开源的方案中,是一个比较优的选择。主打SQL on HBase , 基于SQL能完成HBase的CRUD操作,支持JDBC协议。 Apache Phoenix在Hadoop生态里面位置:

 

Phoenix二级索引特点:

  • Covered Indexes(覆盖索引) :把关注的数据字段也附在索引表上,只需要通过索引表就能返回所要查询的数据(列), 所以索引的列必须包含所需查询的列(SELECT的列和WHRER的列)。
  • Functional indexes(函数索引): 索引不局限于列,支持任意的表达式来创建索引。
  • Global indexes(全局索引):适用于读多写少场景。通过维护全局索引表,所有的更新和写操作都会引起索引的更新,写入性能受到影响。 在读数据时,Phoenix SQL会基于索引字段,执行快速查询。
  • Local indexes(本地索引):适用于写多读少场景。 在数据写入时,索引数据和表数据都会存储在本地。在数据读取时, 由于无法预先确定region的位置,所以在读取数据时需要检查每个region(以找到索引数据),会带来一定性能(网络)开销。

其他的在网上也很多自己基于Coprocessor实现二级索引的文章,大体都是遵循类似的思路:构建一份“索引”的映射关系,存储在另一张hbase表或者其他DB里面。

方案优缺点:

  • 优点: 基于Coprocessor的方案,从开发设计的角度看, 把很多对二级索引管理的细节都封装在的Coprocessor具体实现类里面, 这些细节对外面读写的人是无感知的,简化了数据访问者的使用。
  • 缺点: 但是Coprocessor的方案入侵性比较强, 增加了在Regionserver内部需要运行和维护二级索引关系表的代码逻辑等,对Regionserver的性能会有一定影响。

2.3 elasticsearch+hbase方案

比如说你现在有一行数据

id name age ….30 个字段

但是你现在搜索,只需要根据 id name age 三个字段来搜索

如果你傻乎乎的往 es 里写入一行数据所有的字段,就会导致说 70% 的数据是不用来搜索的,结果硬是占据了 es 机器上的 filesystem cache 的空间,单挑数据的数据量越大,就会导致 filesystem cahce 能缓存的数据就越少

仅仅只是写入 es 中要用来检索的少数几个字段就可以了,比如说,就写入 es id name age 三个字段就可以了,然后你可以把其他的字段数据存在 MySQL 里面,我们一般是建议用 es + hbase 的这么一个架构

hbase 的特点是适用于海量数据的在线存储,就是对 hbase 可以写入海量数据,不要做复杂的搜索,就是做很简单的一些根据 id 或者范围进行查询的这么一个操作就可以了

从 es 中根据 name 和 age 去搜索,拿到的结果可能就 20 个 doc id,然后根据 doc id 到 hbase 里去查询每个 doc id 对应的完整的数据,给查出来,再返回给前端。

 

你最好是写入 es 的数据小于等于,或者是略微大于 es 的 filesystem cache 的内存容量

然后你从 es 检索可能就花费 20ms,然后再根据 es 返回的 id 去 hbase 里查询,查 20 条数据,可能也就耗费个 30ms,可能你原来那么玩儿,1T 数据都放 es,会每次查询都是 5 ~ 10 秒,现在可能性能就会很高,每次查询就是 50ms。

四个字总结的话,我觉得就是“各司其职”,HBase 就用来存储,ES 就用来做索引,况且目前的实际情况跟文章中说的也很像,要查询的字段就几个,而其他的字段又很大又没用,没必要都丢到 ES 中,浪费查询效率

2.4 Solr+hbase方案

Solr是一个独立的企业级搜索应用server,它对并提供相似干Web-service的API接口。用户能够通过http请求,向搜索引擎server提交一定格式的XML文件,生成索引。也能够通过Http Get操作提出查找请求,并得到XML格式的返回结果。

Solr是一个高性能。採用JAVA5开发。基干Lucene的全文搜索server。同一时候对其进行了扩展。提供了比Lucene更为丰富的查询语言,同一时候实现了可配置、可扩展并对查询性能进行了优化,而且提供了一个完好的功能节理界面。是一款非常优秀的全文搜索引擎。

HBase无可置疑拥有其优势,但其本身仅仅对rowkey支持毫秒级的高速检索,对于多字段的组合查询却无能为力。基于Solr的HBase多条件查询原理非常easy。将HBase表中涉及条件过滤的字段和rowkey在Solr中建立索引,通过Solr的多条件查询高速获得符合过滤条件的rowkey值,拿到这些rowkey之后在HBASE中通过指定rowkey进行查询。

 

网上其它还有根据Phoenix构建的,redis、mysql等都是可以尝试的。



Tags:HBase   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
HBase详细介绍及原理解析!
基本介绍HBase官网:https://hbase.apache.org/。Apache HBase 是 Hadoop中一个支持分布式的、可扩展的大数据存储的数据库。当需要对大数据进行随机、实时读/写访问时,可以用...【详细内容】
2023-11-16  Search: HBase  点击:(158)  评论:(0)  加入收藏
浅谈HBase数据结构和系统架构
Part 01 LSM树模型常见的的关系型数据库,如MySQL、SQL Server、Oracle等,使用B+ Tree作为数据存储与索引的基本结构,非叶子节点只存放索引数据,叶子节点存放所有数据和指向相邻...【详细内容】
2023-10-17  Search: HBase  点击:(238)  评论:(0)  加入收藏
HBase的二级索引种类和设计
0 HBase简介HBase是一个构建在HDFS之上,用于海量数据存储分布式列存储系统。 表的每行都是按照RowKey的字典序排序存储 表的数据是按照RowKey区间进行分割存储成多个region所...【详细内容】
2022-10-15  Search: HBase  点击:(328)  评论:(0)  加入收藏
分布式存储系统Apache HBase的现状和发展
导读:Apache HBase(Hadoop Database),是一个基于Google BigTable论文设计的高可靠性、高性能、可伸缩的分布式存储系统。全文将围绕以下几个方面展开: HBase是什么 HBase社区的发...【详细内容】
2022-07-08  Search: HBase  点击:(382)  评论:(0)  加入收藏
大白话详解大数据HBase,老刘真的很用心
老刘今天复习HBase知识发现很多资料都没有把概念说清楚,有很多专业名词一笔带过没有解释。比如这个框架高性能、高可用,那什么是高性能、高可用?怎么实现的高性能高可用?没说!如...【详细内容】
2021-03-04  Search: HBase  点击:(388)  评论:(0)  加入收藏
mongodb,redis,hbase,三者都是nosql数据库,他们的最大区别和不同定位是什么?
一、NoSQL的简介NoSQL比关系型数据库性能高数倍。NoSQL凭借 “易扩展、大数据、高可用、高性能、灵活性”特点强势引领全场。CP型分布式数据库,能够保证数据的强一致性和分区...【详细内容】
2021-02-25  Search: HBase  点击:(891)  评论:(0)  加入收藏
Redis、传统数据库、HBase以及Hive的区别
在大数据相关行业的面试中,经常会被问到这个问题:Redis、传统数据库、HBase以及Hive的区别。 本文将针对这个面试问题,做以下分析:1.问题分析面试官考核的是你对不同数据存储技...【详细内容】
2021-02-23  Search: HBase  点击:(760)  评论:(0)  加入收藏
Redis、MongoDB、HBase应用场景分析
Redis定位在"快",MongoDB定位在"灵活",HBase定位于"大"。在一般使用情况下,MongoDB可以当作简单场景下的但是性能高数倍的MySQL,Redis基本只会用来做缓存,HBase用来存储海量数据...【详细内容】
2020-11-11  Search: HBase  点击:(548)  评论:(0)  加入收藏
聊聊HBase分布式数据库设计那些事
数据模型传统的关系型数据库,一张表(table)由行(row)和列(column)组成。相对Hbase分布式数据库却有所差别,可以把Hbase中的表理解成不同维度Map的集合。包含以下主要概念。 ta...【详细内容】
2020-10-29  Search: HBase  点击:(335)  评论:(0)  加入收藏
什么是HBase?它是怎样工作的?终于有人讲明白了
导读:HBase是一个构建在HDFS之上的、分布式的、支持多版本的NoSQL数据库,它的出现补齐了大数据场景下快速查询数据能力的短板。它非常适用于对平台中的热数据进行存储并提供查...【详细内容】
2020-10-14  Search: HBase  点击:(340)  评论:(0)  加入收藏
▌简易百科推荐
向量数据库落地实践
本文基于京东内部向量数据库vearch进行实践。Vearch 是对大规模深度学习向量进行高性能相似搜索的弹性分布式系统。详见: https://github.com/vearch/zh_docs/blob/v3.3.X/do...【详细内容】
2024-04-03  京东云开发者    Tags:向量数据库   点击:(5)  评论:(0)  加入收藏
原来 SQL 函数是可以内联的!
介绍在某些情况下,SQL 函数(即指定LANGUAGE SQL)会将其函数体内联到调用它的查询中,而不是直接调用。这可以带来显著的性能提升,因为函数体可以暴露给调用查询的规划器,从而规划器...【详细内容】
2024-04-03  红石PG  微信公众号  Tags:SQL 函数   点击:(5)  评论:(0)  加入收藏
如何正确选择NoSQL数据库
译者 | 陈峻审校 | 重楼Allied Market Research最近发布的一份报告指出,业界对于NoSQL数据库的需求正在持续上升。2022年,全球NoSQL市场的销售额已达73亿美元,预计到2032年将达...【详细内容】
2024-03-28    51CTO  Tags:NoSQL   点击:(14)  评论:(0)  加入收藏
为什么数据库连接池不采用 IO 多路复用?
这是一个非常好的问题。IO多路复用被视为是非常好的性能助力器。但是一般我们在使用DB时,还是经常性采用c3p0,tomcat connection pool等技术来与DB连接,哪怕整个程序已经变成以...【详细内容】
2024-03-27  dbaplus社群    Tags:数据库连接池   点击:(14)  评论:(0)  加入收藏
八个常见的数据可视化错误以及如何避免它们
在当今以数据驱动为主导的世界里,清晰且具有洞察力的数据可视化至关重要。然而,在创建数据可视化时很容易犯错误,这可能导致对数据的错误解读。本文将探讨一些常见的糟糕数据可...【详细内容】
2024-03-26  DeepHub IMBA  微信公众号  Tags:数据可视化   点击:(7)  评论:(0)  加入收藏
到底有没有必要分库分表,如何考量的
关于是否需要进行分库分表,可以根据以下考量因素来决定: 数据量和负载:如果数据量巨大且负载压力较大,单一库单一表可能无法满足性能需求,考虑分库分表。 数据增长:预估数据增长...【详细内容】
2024-03-20  码上遇见你  微信公众号  Tags:分库分表   点击:(16)  评论:(0)  加入收藏
在 SQL 中写了 in 和 not in,技术总监说要炒了我……
WHY?IN 和 NOT IN 是比较常用的关键字,为什么要尽量避免呢?1、效率低项目中遇到这么个情况:t1表 和 t2表 都是150w条数据,600M的样子,都不算大。但是这样一句查询 ↓select *...【详细内容】
2024-03-18  dbaplus社群    Tags:SQL   点击:(6)  评论:(0)  加入收藏
应对慢SQL的致胜法宝:7大实例剖析+优化原则
大促备战,最大的隐患项之一就是慢SQL,对于服务平稳运行带来的破坏性最大,也是日常工作中经常带来整个应用抖动的最大隐患,在日常开发中如何避免出现慢SQL,出现了慢SQL应该按照什...【详细内容】
2024-03-14  京东云开发者    Tags:慢SQL   点击:(5)  评论:(0)  加入收藏
过去一年,我看到了数据库领域的十大发展趋势
作者 | 朱洁策划 | 李冬梅过去一年,行业信心跌至冰点2022 年中,红衫的一篇《适应与忍耐》的报告,对公司经营提出了预警,让各个公司保持现金流,重整团队,想办法增加盈利。这篇报告...【详细内容】
2024-03-12    InfoQ  Tags:数据库   点击:(32)  评论:(0)  加入收藏
SQL优化的七个方法,你会哪个?
一、插入数据优化 普通插入:在平时我们执行insert语句的时候,可能都是一条一条数据插入进去的,就像下面这样。INSERT INTO `department` VALUES(1, '研发部(RD)', &#39...【详细内容】
2024-03-07  程序员恰恰  微信公众号  Tags:SQL优化   点击:(20)  评论:(0)  加入收藏
站内最新
站内热门
站内头条