您当前的位置:首页 > 电脑百科 > 数据库 > 百科

颠覆认知:数据库连接池到底应该设多大?

时间:2023-09-22 13:37:10  来源:  作者:dbaplus社群

我在研究HikariCP(一个数据库连接池)时无意间在HikariCP的Github wiki上看到了一篇文章,这篇文章有力地消除了我一直以来的疑虑,看完之后感觉神清气爽,故在此做译文分享。

数据库连接池的配置是开发者们常常搞出坑的地方,在配置数据库连接池时,有几个可以说是和直觉背道而驰的原则需要明确。

一、1万并发用户访问

想象你有一个网站,压力虽然还没到Facebook那个级别,但也有个1万上下的并发访问——也就是说差不多2万左右的TPS。那么这个网站的数据库连接池应该设置成多大呢?结果可能会让你惊讶,因为这个问题的正确问法是:

“这个网站的数据库连接池应该设置成多小呢?”

下面这个视频是Oracle Real World Performance Group发布的,请先看完:

http://www.dAIlymotion.com/video/x2s8uec

因为这视频是英文解说且没有字幕,我替大家做一下简单的概括:

视频中对Oracle数据库进行压力测试,9600并发线程进行数据库操作,每两次访问数据库的操作之间sleep 550ms,一开始设置的中间件线程池大小为2048:

初始的配置

压测跑起来之后是这个样子的:

2048连接时的性能数据

每个请求要在连接池队列里等待33ms,获得连接后执行SQL需要77ms。

此时数据库的等待事件是这样的:

各种buffer busy waits

各种buffer busy waits,数据库CPU在95%左右(这张图里没截到CPU)。

接下来,把中间件连接池减到1024(并发什么的都不变),性能数据变成了这样:

连接池降到1024后

获取链接等待时长没怎么变,但是执行SQL的耗时减少了。

下面这张图,上半部分是wait,下半部分是吞吐量。

wait和吞吐量

能看到,中间件连接池从2048减半之后,吐吞量没变,但wait事件减少了一半。

接下来,把数据库连接池减到96,并发线程数仍然是9600不变。

96个连接时的性能数据

队列平均等待1ms,执行SQL平均耗时2ms。

wait事件几乎没了,吞吐量上升。

没有调整任何其他东西,仅仅只是缩小了中间件层的数据库连接池,就把请求响应时间从100ms左右缩短到了3ms。

二、But why?

为什么Nginx只用4个线程发挥出的性能就大大超越了100个进程的Apache HTTPD?回想一下计算机科学的基础知识,答案其实是很明显的。

即使是单核CPU的计算机也能“同时”运行数百个线程。但我们都[应该]知道这只不过是操作系统用时间分片玩的一个小把戏。一颗CPU核心同一时刻只能执行一个线程,然后操作系统切换上下文,核心开始执行另一个线程的代码,以此类推。

给定一颗CPU核心,其顺序执行A和B永远比通过时间分片“同时”执行A和B要快,这是一条计算机科学的基本法则。一旦线程的数量超过了CPU核心的数量,再增加线程数系统就只会更慢,而不是更快。

这几乎就是真理了……

三、有限的资源

上面的说法只能说是接近真理,但还并没有这么简单,有一些其他的因素需要加入。当我们寻找数据库的性能瓶颈时,总是可以将其归为三类:CPU、磁盘、网络。把内存加进来也没有错,但比起磁盘和网络,内存的带宽要高出好几个数量级,所以就先不加了。

如果我们无视磁盘和网络,那么结论就非常简单。在一个8核的服务器上,设定连接/线程数为8能够提供最优的性能,再增加连接数就会因上下文切换的损耗导致性能下降。数据库通常把数据存储在磁盘上,磁盘又通常是由一些旋转着的金属碟片和一个装在步进马达上的读写头组成的。

读/写头同一时刻只能出现在一个地方,然后它必须“寻址”到另外一个位置来执行另一次读写操作。所以就有了寻址的耗时,此外还有旋回耗时,读写头需要等待碟片上的目标数据“旋转到位”才能进行操作。使用缓存当然是能够提升性能的,但上述原理仍然成立。

在这一时间段(即"I/O等待")内,线程是在“阻塞”着等待磁盘,此时操作系统可以将那个空闲的CPU核心用于服务其他线程。所以,由于线程总是在I/O上阻塞,我们可以让线程/连接数比CPU核心多一些,这样能够在同样的时间内完成更多的工作。

那么应该多多少呢?这要取决于磁盘。较新型的SSD不需要寻址,也没有旋转的碟片。可别想当然地认为“SSD速度更快,所以我们应该增加线程数”,恰恰相反,无需寻址和没有旋回耗时意味着更少的阻塞,所以更少的线程[更接近于CPU核心数]会发挥出更高的性能。只有当阻塞创造了更多的执行机会时,更多的线程数才能发挥出更好的性能。

网络和磁盘类似。通过以太网接口读写数据时也会形成阻塞,10G带宽会比1G带宽的阻塞少一些,1G带宽又会比100M带宽的阻塞少一些。不过网络通常是放在第三位考虑的,有些人会在性能计算中忽略它们。

上图是PostgreSQL的benchmark数据,可以看到TPS增长率从50个连接数开始变缓。在上面Oracle的视频中,他们把连接数从2048降到了96,实际上96都太高了,除非服务器有16或32颗核心。

四、计算公式

下面的公式是由PostgreSQL提供的,不过我们认为可以广泛地应用于大多数数据库产品。你应该模拟预期的访问量,并从这一公式开始测试你的应用,寻找最合适的连接数值。

连接数 = ((核心数 * 2) + 有效磁盘数)

核心数不应包含超线程(hyper thread),即使打开了hyperthreading也是。如果活跃数据全部被缓存了,那么有效磁盘数是0,随着缓存命中率的下降,有效磁盘数逐渐趋近于实际的磁盘数。这一公式作用于SSD时的效果如何尚未有分析。

按这个公式,你的4核i7数据库服务器的连接池大小应该为((4 * 2) + 1) = 9。取个整就算是是10吧。是不是觉得太小了?跑个性能测试试一下,我们保证它能轻松搞定3000用户以6000TPS的速率并发执行简单查询的场景。如果连接池大小超过10,你会看到响应时长开始增加,TPS开始下降。

笔者注:

这一公式其实不仅适用于数据库连接池的计算,大部分涉及计算和I/O的程序,线程数的设置都可以参考这一公式。我之前在对一个使.NETty编写的消息收发服务进行压力测试时,最终测出的最佳线程数就刚好是CPU核心数的一倍。

公理:你需要一个小连接池,和一个充满了等待连接的线程的队列

如果你有10000个并发用户,设置一个10000的连接池基本等于失了智。1000仍然很恐怖,即使100也太多了。你需要一个10来个连接的小连接池,然后让剩下的业务线程都在队列里等待。连接池中的连接数量应该等于你的数据库能够有效同时进行的查询任务数(通常不会高于2*CPU核心数)。

我们经常见到一些小规模的web应用,应付着大约十来个的并发用户,却使用着一个100连接数的连接池。这会对你的数据库造成极其不必要的负担。

请注意:

连接池的大小最终与系统特性相关。

比如一个混合了长事务和短事务的系统,通常是任何连接池都难以进行调优的。最好的办法是创建两个连接池,一个服务于长事务,一个服务于短事务。

再例如一个系统执行一个任务队列,只允许一定数量的任务同时执行,此时并发任务数应该去适应连接池连接数,而不是反过来。

>>>>参考资料

  • https://github.com/brettwooldridge/HikariCP/wiki/About-Pool-Sizing

作者丨kelgon

来源丨https://www.jianshu.com/p/a8f653fc0c54



Tags:数据库   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
向量数据库落地实践
本文基于京东内部向量数据库vearch进行实践。Vearch 是对大规模深度学习向量进行高性能相似搜索的弹性分布式系统。详见: https://github.com/vearch/zh_docs/blob/v3.3.X/do...【详细内容】
2024-04-03  Search: 数据库  点击:(4)  评论:(0)  加入收藏
如何正确选择NoSQL数据库
译者 | 陈峻审校 | 重楼Allied Market Research最近发布的一份报告指出,业界对于NoSQL数据库的需求正在持续上升。2022年,全球NoSQL市场的销售额已达73亿美元,预计到2032年将达...【详细内容】
2024-03-28  Search: 数据库  点击:(13)  评论:(0)  加入收藏
为什么数据库连接池不采用 IO 多路复用?
这是一个非常好的问题。IO多路复用被视为是非常好的性能助力器。但是一般我们在使用DB时,还是经常性采用c3p0,tomcat connection pool等技术来与DB连接,哪怕整个程序已经变成以...【详细内容】
2024-03-27  Search: 数据库  点击:(12)  评论:(0)  加入收藏
过去一年,我看到了数据库领域的十大发展趋势
作者 | 朱洁策划 | 李冬梅过去一年,行业信心跌至冰点2022 年中,红衫的一篇《适应与忍耐》的报告,对公司经营提出了预警,让各个公司保持现金流,重整团队,想办法增加盈利。这篇报告...【详细内容】
2024-03-12  Search: 数据库  点击:(26)  评论:(0)  加入收藏
让数据库和缓存数据保持一致的三种策略
如何保证缓存和数据库的一致性,这算得上是个老生常谈的话题啦,看到好多技术新人在写更新缓存数据代码,采用了非常复杂甚至“诡异”的方案,甚为不解。一、背景目前随着缓存架构方...【详细内容】
2024-02-20  Search: 数据库  点击:(35)  评论:(0)  加入收藏
MySQL数据库如何生成分组排序的序号
经常进行数据分析的小伙伴经常会需要生成序号或进行数据分组排序并生成序号。在MySQL8.0中可以使用窗口函数来实现,可以参考历史文章有了这些函数,统计分析事半功倍进行了解。...【详细内容】
2024-01-30  Search: 数据库  点击:(53)  评论:(0)  加入收藏
一篇文章,彻底理解数据库操作语言:DDL、DML、DCL、TCL
本篇文章以具体的SQL语句讲解了数据库SQL语言四大分类(数据定义语言DDL,数据操作语言DML,数据查询语言DQL,数据控制语言DCL),同时也介绍了事务控制语言TCL。最近与开发和运维讨论...【详细内容】
2024-01-30  Search: 数据库  点击:(41)  评论:(0)  加入收藏
一文读懂:什么是数据库,它到底有啥用?
提到数据库,可能很多人会很陌生。但据库其实已经渗入我们生活的方方面面,像网上购物、扫码点餐、抢红包等等应用背后都离不开数据库的支持。可以说数据库是支撑各类应用软件运...【详细内容】
2024-01-25  Search: 数据库  点击:(42)  评论:(0)  加入收藏
oracle数据库基础学习
在当今数字化时代,数据库已成为企业运营的关键要素。而Oracle数据库,作为全球领先的企业级数据库管理系统,更是备受推崇。本文将带您深入了解Oracle数据库的基础知识,帮助您从零...【详细内容】
2024-01-20  Search: 数据库  点击:(86)  评论:(0)  加入收藏
一个流行的支持超多数据库的ORM库
Sequelize 是一个流行的 Node.js ORM(对象关系映射)库,用于在 Node.js 中操作关系型数据库。它支持多种数据库系统,如 PostgreSQL、MySQL、SQLite 和 MSSQL,并提供了简单易用的 A...【详细内容】
2024-01-15  Search: 数据库  点击:(75)  评论:(0)  加入收藏
▌简易百科推荐
向量数据库落地实践
本文基于京东内部向量数据库vearch进行实践。Vearch 是对大规模深度学习向量进行高性能相似搜索的弹性分布式系统。详见: https://github.com/vearch/zh_docs/blob/v3.3.X/do...【详细内容】
2024-04-03  京东云开发者    Tags:向量数据库   点击:(4)  评论:(0)  加入收藏
原来 SQL 函数是可以内联的!
介绍在某些情况下,SQL 函数(即指定LANGUAGE SQL)会将其函数体内联到调用它的查询中,而不是直接调用。这可以带来显著的性能提升,因为函数体可以暴露给调用查询的规划器,从而规划器...【详细内容】
2024-04-03  红石PG  微信公众号  Tags:SQL 函数   点击:(3)  评论:(0)  加入收藏
如何正确选择NoSQL数据库
译者 | 陈峻审校 | 重楼Allied Market Research最近发布的一份报告指出,业界对于NoSQL数据库的需求正在持续上升。2022年,全球NoSQL市场的销售额已达73亿美元,预计到2032年将达...【详细内容】
2024-03-28    51CTO  Tags:NoSQL   点击:(13)  评论:(0)  加入收藏
为什么数据库连接池不采用 IO 多路复用?
这是一个非常好的问题。IO多路复用被视为是非常好的性能助力器。但是一般我们在使用DB时,还是经常性采用c3p0,tomcat connection pool等技术来与DB连接,哪怕整个程序已经变成以...【详细内容】
2024-03-27  dbaplus社群    Tags:数据库连接池   点击:(12)  评论:(0)  加入收藏
八个常见的数据可视化错误以及如何避免它们
在当今以数据驱动为主导的世界里,清晰且具有洞察力的数据可视化至关重要。然而,在创建数据可视化时很容易犯错误,这可能导致对数据的错误解读。本文将探讨一些常见的糟糕数据可...【详细内容】
2024-03-26  DeepHub IMBA  微信公众号  Tags:数据可视化   点击:(6)  评论:(0)  加入收藏
到底有没有必要分库分表,如何考量的
关于是否需要进行分库分表,可以根据以下考量因素来决定: 数据量和负载:如果数据量巨大且负载压力较大,单一库单一表可能无法满足性能需求,考虑分库分表。 数据增长:预估数据增长...【详细内容】
2024-03-20  码上遇见你  微信公众号  Tags:分库分表   点击:(13)  评论:(0)  加入收藏
在 SQL 中写了 in 和 not in,技术总监说要炒了我……
WHY?IN 和 NOT IN 是比较常用的关键字,为什么要尽量避免呢?1、效率低项目中遇到这么个情况:t1表 和 t2表 都是150w条数据,600M的样子,都不算大。但是这样一句查询 ↓select *...【详细内容】
2024-03-18  dbaplus社群    Tags:SQL   点击:(5)  评论:(0)  加入收藏
应对慢SQL的致胜法宝:7大实例剖析+优化原则
大促备战,最大的隐患项之一就是慢SQL,对于服务平稳运行带来的破坏性最大,也是日常工作中经常带来整个应用抖动的最大隐患,在日常开发中如何避免出现慢SQL,出现了慢SQL应该按照什...【详细内容】
2024-03-14  京东云开发者    Tags:慢SQL   点击:(4)  评论:(0)  加入收藏
过去一年,我看到了数据库领域的十大发展趋势
作者 | 朱洁策划 | 李冬梅过去一年,行业信心跌至冰点2022 年中,红衫的一篇《适应与忍耐》的报告,对公司经营提出了预警,让各个公司保持现金流,重整团队,想办法增加盈利。这篇报告...【详细内容】
2024-03-12    InfoQ  Tags:数据库   点击:(26)  评论:(0)  加入收藏
SQL优化的七个方法,你会哪个?
一、插入数据优化 普通插入:在平时我们执行insert语句的时候,可能都是一条一条数据插入进去的,就像下面这样。INSERT INTO `department` VALUES(1, '研发部(RD)', &#39...【详细内容】
2024-03-07  程序员恰恰  微信公众号  Tags:SQL优化   点击:(19)  评论:(0)  加入收藏
站内最新
站内热门
站内头条