您当前的位置:首页 > 电脑百科 > 数据库 > 百科

从Clickhouse迁移到Doris,数据仓库性能大提升

时间:2023-11-17 15:19:24  来源:微信公众号  作者:Java学研大本营

从一个OLAP数据库迁移到另一个数据库是一项艰巨的工程。即使能找到一些有用的数据工具,您可能仍会犹豫是否对数据架构进行大手术,因为不确定如何运作。

本文分享如何从ClickHouse迁移到Doris的过程,包括为什么需要更改,需要注意什么以及如何比较两个数据库在各自环境中的性能。

1 使用Doris替换Kylin、ClickHouse和Druid

这里有一家电子商务SaaS提供商,其数据系统提供实时和离线报告、客户分割和日志分析服务。最初,他们为这些不同的目的使用了不同的OLAP引擎:

  • Apache Kylin用于离线报告:该系统为超过500万个卖家提供离线报告服务。其中的大型卖家拥有超过1000万注册会员和100,000个SKU,详细信息放在平台上的400多个数据立方体中。
  • ClickHouse用于客户分割和Top-N日志查询:这需要高频更新、高QPS和复杂的SQL。
  • Apache Druid用于实时报告:卖家通过组合不同的维度提取所需的数据,这种实时报告需要快速的数据更新、快速的查询响应和系统的强大稳定性。

从Clickhouse迁移到Doris,数据仓库性能大提升

这三个组件都有各自的痛点:

  • Apache Kylin在固定表模式下运行良好,但每次添加维度时,需要创建一个新的数据立方体并在其中重新填充历史数据。
  • ClickHouse不适用于多表处理,因此需要额外的解决方案来进行联合查询和多表连接查询。在高并发场景下,它的表现低于预期。
  • Apache Druid实现了幂等写入,因此它本身不支持数据更新或删除。这意味着当上游出现问题时,需要进行完整的数据替换。如果您从头到尾考虑所有数据备份和移动,这样的数据修复是一个多步骤的过程。此外,新摄入的数据在放入Druid中的段之前将无法用于查询。这意味着存在更长的时间窗口,从而导致上下游之间的数据不一致。

由于它们共同工作,这种架构可能太难以导航,因为它需要在开发、监控和维护方面了解所有这些组件。此外,每次用户扩展集群时,他们必须停止当前集群并迁移所有数据库和表,这不仅是一个巨大的任务,而且会对业务造成巨大的干扰。

从Clickhouse迁移到Doris,数据仓库性能大提升图片

Apache Doris填补了这些空白。

  • 查询性能:Doris擅长高并发查询和连接查询,并且现在配备了倒排索引以加速日志搜索。
  • 数据更新:Doris的唯一键模型支持大容量更新和高频实时写入,而重复键模型和唯一键模型支持部分列更新。它还提供数据写入的恰好一次保证,并确保基表、物化视图和副本之间的一致性。
  • 维护:Doris与MySQL兼容。它支持轻松扩展和轻量级模式更改。它配备了自己的集成工具,如Flink-Doris-Connector和Spark-Doris-Connector。

因此,计划进行迁移。

2 替换手术

ClickHouse是旧数据架构中的主要性能瓶颈,也是最初想要进行更改的原因,因此从ClickHouse开始。

2.1 SQL语句的更改

表创建语句

从Clickhouse迁移到Doris,数据仓库性能大提升图片

这里构建了自己的SQL重写工具,可以将ClickHouse表创建语句转换为Doris表创建语句。该工具可以自动执行以下更改:

  • 映射字段类型:它将ClickHouse字段类型转换为Doris中对应的字段类型。例如,它将String作为Key转换为Varchar,将String作为分区字段转换为Date V2。
  • 在动态分区表中设置历史分区的数量:某些表具有历史分区,应在Doris表创建时指定分区数,否则将抛出“无分区”错误。
  • 确定桶的数量:它根据历史分区的数据量来决定桶的数量;对于非分区表,它根据历史数据量来确定桶的配置。
  • 确定TTL:它确定动态分区表中分区的生存时间。
  • 设置导入顺序:对于Doris的唯一键模型,它可以根据Sequence列指定数据导入顺序,以确保数据摄入的有序性。

从Clickhouse迁移到Doris,数据仓库性能大提升图片

查询语句

同样,也有工具可以将ClickHouse查询语句转换为Doris查询语句。这是为了准备ClickHouse和Doris之间的比较测试。转换中的关键考虑因素包括:

  • 表名的转换:这很简单,只需按照表创建语句中的映射规则进行即可。
  • 函数的转换:例如,ClickHouse中的COUNTIF函数等价于SUM(CASE WHEN_THEN 1 ELSE 0)Array Join等价于ExplodeLateral View,而ORDER BYGROUP BY应转换为窗口函数。
  • 语义上的差异:ClickHouse按照自己的协议进行操作,而Doris兼容MySQL,因此需要为子查询设置别名。在这种情况下,子查询在客户分割中很常见,因此他们使用sqlparse

2.2 数据摄入方法的变化

从Clickhouse迁移到Doris,数据仓库性能大提升图片

Apache Doris提供了广泛的数据写入方法。对于实时链接,采用Stream Load从NSQ和Kafka摄取数据。

对于大型离线数据,测试了不同的方法,以下是结论:

  • Insert Into 使用Multi-Catalog读取外部数据源并使用Insert Into进行摄取可以满足此用例中的大多数需求。
  • Stream Load

Spark-Doris-Connector是一种更通用的方法。它可以处理大量数据并确保写入稳定性。关键是找到正确的写入速度和并行性。

Spark-Doris-Connector还支持Bitmap。它允许您将Bitmap数据的计算工作负载移动到Spark集群中。

Spark-Doris-Connector和Flink-Doris-Connector都依赖于Stream Load。CSV是推荐的格式选择。用户的数十亿行测试表明,CSV比JSON快40%。

  • Spark Load

Spark Load方法利用Spark资源进行数据洗牌和排名。计算结果放在HDFS中,然后Doris直接从HDFS读取文件(通过Broker Load)。这种方法非常适合大规模数据摄入。数据越多,摄入速度越快,资源利用率越高。

3 压力测试

这里比较了两个组件在SQL和连接查询方案上的性能,并计算了Apache Doris的CPU和内存消耗。

3.1 SQL查询性能

Apache Doris在16个SQL查询中的10个中表现优于ClickHouse,最大的性能差距比例接近30。总体而言,Apache Doris比ClickHouse快2~3倍。

从Clickhouse迁移到Doris,数据仓库性能大提升图片

3.2 连接查询性能

对于连接查询测试,使用了不同大小的主表和维表。

  • 主表:用户活动表(40亿行)、用户属性表(250亿行)和用户属性表(960亿行)
  • 维表:100万行、1000万行、5000万行、1亿行、5亿行、10亿行和25亿行。

测试包括完全连接查询和过滤连接查询。完全连接查询连接主表和维表的所有行,而过滤连接查询使用WHERE过滤器检索特定卖家ID的数据。结果如下:

主表(40亿行):

  • 完全连接查询:Doris在所有维表的完全连接查询中均优于ClickHouse。随着维表变大,性能差距越来越大。最大的差距比例接近5。
  • 过滤连接查询:基于卖家ID,过滤器从主表中筛选出了4100万行。对于小型维表,Doris比ClickHouse快2~3倍;对于大型维表,Doris比ClickHouse快10倍以上;对于大于1亿行的维表,ClickHouse会抛出OOM错误,而Doris则正常运行。

主表(250亿行):

  • 完全连接查询:Doris在所有维表的完全连接查询中均优于ClickHouse。ClickHouse在维表大于5000万行时会产生OOM错误。
  • 过滤连接查询:过滤器从主表中筛选出了5.7亿行。Doris在几秒钟内响应,而ClickHouse在连接大型维表时完成时间为几分钟,并在此过程中崩溃。

主表(960亿行):

Doris在所有查询中都表现出相对较快的性能,而ClickHouse无法执行所有查询。

在CPU和内存消耗方面,Apache Doris在所有大小的连接查询中都保持稳定的集群负载。



Tags:数据仓库   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
从Clickhouse迁移到Doris,数据仓库性能大提升
从一个OLAP数据库迁移到另一个数据库是一项艰巨的工程。即使能找到一些有用的数据工具,您可能仍会犹豫是否对数据架构进行大手术,因为不确定如何运作。本文分享如何从ClickHou...【详细内容】
2023-11-17  Search: 数据仓库  点击:(201)  评论:(0)  加入收藏
数据仓库与SQL数据库有什么区别
首先,定义三个概念:数据库软件、数据库、数据仓库。数据库软件:是一种软件,可以看得见,可以操作。用来实现数据库逻辑功能。属于物理层。数据库:是一种逻辑概念,用来存放数据的仓库...【详细内容】
2023-11-13  Search: 数据仓库  点击:(183)  评论:(0)  加入收藏
从数据池或大数据仓库到数据湖
这篇博文讨论了从数据池/大数据仓库到数据湖的演变。它探讨了传统数据仓库的局限性以及数据湖在可扩展性、敏捷性和自助服务方面的优势。这篇文章还涵盖了数据仓库的基本功...【详细内容】
2023-11-10  Search: 数据仓库  点击:(268)  评论:(0)  加入收藏
谈谈数据仓库中的数据建模优秀实践
开发和生成数据库中使用的数据概念表示的过程称为数据建模。数据仓库上下文中的数据建模是创建将存储在数据仓库中的数据的逻辑表示的过程。数据仓库中数据建模的目标是建立...【详细内容】
2023-10-08  Search: 数据仓库  点击:(356)  评论:(0)  加入收藏
数据仓库与数据分析架构:驱动数据驱动决策
在当今信息爆炸的时代,数据已经成为了企业决策的核心资产。数据仓库与数据分析架构的崛起,为企业提供了有效地管理和分析海量数据的解决方案,实现了数据驱动决策的愿景。这个强...【详细内容】
2023-09-05  Search: 数据仓库  点击:(89)  评论:(0)  加入收藏
一文带你搞懂数据仓库是什么?
数据仓库的诞生原因随着互联网的普及,信息技术已经深入到各行各业,并逐步融入到企业的日常运营中。然而,当前企业在信息化建设过程中遇到了一些困境与挑战。1、历史数据积存。...【详细内容】
2023-08-11  Search: 数据仓库  点击:(185)  评论:(0)  加入收藏
基于CLICKHOUSE的数据仓库分层规范
数据仓库分层架构数据仓库我们一般分为接入层、明细层、实体层、主题层、应用层。各层存储的数据粒度不同。接入层:一般存储接收的原始数据,并给接入的数据打上接收时间戳。明...【详细内容】
2023-08-05  Search: 数据仓库  点击:(315)  评论:(0)  加入收藏
深度解读字节跳动开源的云原生数据仓库 ByConity
ByConity 基于 ClickHouse 内核开发,采用计算存储分离的架构、主流的 OLAP 引擎和自研的表引擎,提供便捷的弹性扩缩容和极速的分析性能,覆盖实时分析和海量数据的离线分析,帮助...【详细内容】
2023-05-22  Search: 数据仓库  点击:(244)  评论:(0)  加入收藏
有了数据湖,数据仓库究竟能不能被取代?他们又有什么样的区别呢?
数据湖是近两年中比较新的技术在大数据领域中,对于一个真正的数据湖应该是什么样子,现在对数据湖认知还是处在探索的阶段,像现在代表的开源产品有iceberg、hudi、Delta Lake。...【详细内容】
2023-05-06  Search: 数据仓库  点击:(113)  评论:(0)  加入收藏
数据仓库与数据挖掘的关系是什么,区别是什么?
区别:1、目的不同:数据仓库是为了支持复杂的分析和决策,数据挖掘是为了在海量的数据里面发掘出预测性的、分析性的信息,多用来预测。2、阶段不同:数据仓库是数据挖掘的先期步骤,通...【详细内容】
2023-03-01  Search: 数据仓库  点击:(171)  评论:(0)  加入收藏
▌简易百科推荐
向量数据库落地实践
本文基于京东内部向量数据库vearch进行实践。Vearch 是对大规模深度学习向量进行高性能相似搜索的弹性分布式系统。详见: https://github.com/vearch/zh_docs/blob/v3.3.X/do...【详细内容】
2024-04-03  京东云开发者    Tags:向量数据库   点击:(4)  评论:(0)  加入收藏
原来 SQL 函数是可以内联的!
介绍在某些情况下,SQL 函数(即指定LANGUAGE SQL)会将其函数体内联到调用它的查询中,而不是直接调用。这可以带来显著的性能提升,因为函数体可以暴露给调用查询的规划器,从而规划器...【详细内容】
2024-04-03  红石PG  微信公众号  Tags:SQL 函数   点击:(3)  评论:(0)  加入收藏
如何正确选择NoSQL数据库
译者 | 陈峻审校 | 重楼Allied Market Research最近发布的一份报告指出,业界对于NoSQL数据库的需求正在持续上升。2022年,全球NoSQL市场的销售额已达73亿美元,预计到2032年将达...【详细内容】
2024-03-28    51CTO  Tags:NoSQL   点击:(13)  评论:(0)  加入收藏
为什么数据库连接池不采用 IO 多路复用?
这是一个非常好的问题。IO多路复用被视为是非常好的性能助力器。但是一般我们在使用DB时,还是经常性采用c3p0,tomcat connection pool等技术来与DB连接,哪怕整个程序已经变成以...【详细内容】
2024-03-27  dbaplus社群    Tags:数据库连接池   点击:(12)  评论:(0)  加入收藏
八个常见的数据可视化错误以及如何避免它们
在当今以数据驱动为主导的世界里,清晰且具有洞察力的数据可视化至关重要。然而,在创建数据可视化时很容易犯错误,这可能导致对数据的错误解读。本文将探讨一些常见的糟糕数据可...【详细内容】
2024-03-26  DeepHub IMBA  微信公众号  Tags:数据可视化   点击:(6)  评论:(0)  加入收藏
到底有没有必要分库分表,如何考量的
关于是否需要进行分库分表,可以根据以下考量因素来决定: 数据量和负载:如果数据量巨大且负载压力较大,单一库单一表可能无法满足性能需求,考虑分库分表。 数据增长:预估数据增长...【详细内容】
2024-03-20  码上遇见你  微信公众号  Tags:分库分表   点击:(13)  评论:(0)  加入收藏
在 SQL 中写了 in 和 not in,技术总监说要炒了我……
WHY?IN 和 NOT IN 是比较常用的关键字,为什么要尽量避免呢?1、效率低项目中遇到这么个情况:t1表 和 t2表 都是150w条数据,600M的样子,都不算大。但是这样一句查询 ↓select *...【详细内容】
2024-03-18  dbaplus社群    Tags:SQL   点击:(5)  评论:(0)  加入收藏
应对慢SQL的致胜法宝:7大实例剖析+优化原则
大促备战,最大的隐患项之一就是慢SQL,对于服务平稳运行带来的破坏性最大,也是日常工作中经常带来整个应用抖动的最大隐患,在日常开发中如何避免出现慢SQL,出现了慢SQL应该按照什...【详细内容】
2024-03-14  京东云开发者    Tags:慢SQL   点击:(4)  评论:(0)  加入收藏
过去一年,我看到了数据库领域的十大发展趋势
作者 | 朱洁策划 | 李冬梅过去一年,行业信心跌至冰点2022 年中,红衫的一篇《适应与忍耐》的报告,对公司经营提出了预警,让各个公司保持现金流,重整团队,想办法增加盈利。这篇报告...【详细内容】
2024-03-12    InfoQ  Tags:数据库   点击:(25)  评论:(0)  加入收藏
SQL优化的七个方法,你会哪个?
一、插入数据优化 普通插入:在平时我们执行insert语句的时候,可能都是一条一条数据插入进去的,就像下面这样。INSERT INTO `department` VALUES(1, '研发部(RD)', &#39...【详细内容】
2024-03-07  程序员恰恰  微信公众号  Tags:SQL优化   点击:(19)  评论:(0)  加入收藏
站内最新
站内热门
站内头条