您当前的位置:首页 > 电脑百科 > 人工智能

Meta开源的ChatGPT平替到底好不好用?测试结果、加料改装方法已出炉,2天5.2k星

时间:2023-03-06 11:56:07  来源:微信公众号  作者:机器之心

ChatGPT 的持续爆火,早已让各大科技公司坐不住了。

就在刚刚过去的一周,Meta「开源」了一个新的大模型系列 ——​​LLaMA​​​(Large Language Model Meta AI),参数量从 70 亿到 650 亿不等。因为 LLaMA 比之前发布的很多大模型参数更少,但性能更好,所以一经发布让很多研究者兴奋不已。

例如,130 亿参数的 LLaMA 模型「在大多数基准上」可以胜过参数量达 1750 亿的 GPT-3,而且可以在单块 V100 GPU 上运行;而最大的 650 亿参数的 LLaMA 模型可以媲美谷歌的 Chinchilla-70B 和 PaLM-540B。

参数量的减少对于普通研究者和商业机构来说都是好事,但 LLaMA 真的像论文中说得那样表现那么好吗?和当前的 ChatGPT 相比,LLaMA 是否可以勉强一战?为了解答这些疑问,有些研究者已经对这一模型进行了测试。

还有公司已经在尝试补齐 LLaMA 短板,想看能不能通过添加 RLHF 等训练方法让 LLaMA 表现更好。

LLaMA 初步评测

这份评测结果来自一位名叫 @Enryu 的 Medium 作者。它比较了 LLaMA 和 ChatGPT 在解释笑话、零样本分类和代码生成三个颇具挑战性的任务中的效果。相关博客文章为《Mini-post: first look at LLaMA》。

作者在 RTX 3090/RTX 4090 上运行 LLaMA 7B/13B 版本,在单个 A100 上运行 33B 版本。

需要注意的是,与 ChatGPT 不同,其他模型并不是基于指令微调,因此 prompt 的结构有所不同。

解释笑话

这是谷歌原始 PaLM 论文中展示的一个用例:给出一个笑话,让模型来解释它为什么好笑。该任务需要将世界知识和一些基本逻辑相结合。PaLM 之前的所有模型都无法做到这一点。作者从 PaLM 论文中提取了一些示例,比较了 LLaMA-7B、LLaMA-13B、LLaMA-33B 与 ChatGPT 的表现。

 

图片

 

 

可以看到,结果很糟糕。这些模型 get 到了一些笑点,但无法真正理解,它们只是随机生成一些相关的文本流。ChatGPT 虽与 LLaMA-33B 一样表现很差(其他几个模型更差),但它遵循了不一样的策略:生成了一大堆文本,希望自己的回答至少有一部分是正确的(但大部分显然不是),是不是很像大家考试时应对问答题的策略?

不过,ChatGPT 起码 get 到了关于 Schmidthuber 的笑话。但总的来说,这些模型在零样本笑话解释任务上的效果与 PaLM 相差甚远(除非 PaLM 的示例是精心挑选)。

零样本分类

作者考虑的第二项任务更具挑战性 —— 标题党(clickbait)分类。由于连人类也无法就什么是标题党达成一致,作者在 prompt 中为这些模型提供了一些示例(因此实际上是小样本而非零样本)。如下为 LLaMa 的 prompt:

I will tell whether the following news titles are clickbait:
1) The WORST care homes in England: Interactive map reveals the lowest-rated 2,530 residences - so is there one near you?
Clickbait: yes
2).NETflix's top 10 most-watched movies of all time
Clickbait: yes
3) Peering Through the Fog of Inflation
Clickbait: no
4) You’ll never believe which TV cook this cheeky chap grew up to be
Clickbait: yes

下图为 LLaMA-7B、LLaMA-13B、LLaMA-33B 与 ChatGPT 的更多示例结果。

 

图片

 

很明显,赢家为 LLaMA-33B,它是唯一一个能够遵循所有请求格式(yes/no)的模型,并且预测合理。ChatGPT 也还可以,但有些预测不太合理,格式也有错误。较小的模型(7B/13B)不适用于该任务。

代码生成

虽然 LLM 擅长人文学科,但在 STEM 学科上表现糟糕。LLaMA 虽然有基准测试结果,但作者在代码生成领域尝试了一些特别的东西,即将人类语言零样本地转换为 SQL 查询。这并不是很实用,在现实生活中直接编写查询会更有效率。这里只作为代码生成任务的一个示例。

在 prompt 中,作者提供表模式(table schema)以及想要实现的目标,要求模型给出 SQL 查询。如下为一些随机示例,老实说,ChatGPT 看起来效果更好。

-- We have a table `events` with columns `event_id`, `timestamp`, `user_id`, `rpc_method`.
-- We want to count how many users issued request "Login" over the last week.
-- SQL query for this is:

-- 7b
SELECT count (*)
FROM events
WHERE user_id IN (SELECT user_id
 FROM events
 WHERE timestamp >= NOW () - INTERVAL 7 DAY)
 AND rpc_method = 'Login';

-- 13b
SELECT COUNT (*) FROM events WHERE rpc_method = "Login"
 AND UNIX_TIMESTAMP (timestamp) >= UNIX_TIMESTAMP (CURRENT_DATE - INTERVAL 7 DAY)

-- 33b
SELECT user_id,
 COUNT (DISTINCT user_id) AS total
FROM events
WHERE timestamp BETWEEN TIMESTAMP '2013-08-14 00:00:00' AND TIMESTAMP '2013-08-21 00:00:00'
 AND rpc_method = 'Login'
GROUP BY user_id

-- ChatGPT
SELECT COUNT (DISTINCT user_id)
FROM events
WHERE rpc_method = 'Login'
AND timestamp >= DATE_SUB (NOW (), INTERVAL 1 WEEK);

从测试结果来看,LLaMA 在一些任务上表现还不错,但在另一些任务上和 ChatGPT 还有一些差距。如果能像 ChatGPT 一样加入一些「训练秘籍」,效果会不会大幅提升?

加入 RLHF,初创公司 Nebuly AI 开源 ChatLLaMA 训练方法

虽然 LLaMA 发布之初就得到众多研究者的青睐,但是少了 RLHF 的加持,从上述评测结果来看,还是差点意思。

在 LLaMA 发布三天后,初创公司 Nebuly AI 开源了 RLHF 版 LLaMA(ChatLLaMA)的训练方法。它的训练过程类似 ChatGPT,该项目允许基于预训练的 LLaMA 模型构建 ChatGPT 形式的服务。项目上线刚刚 2 天,狂揽 5.2K 星。

 

图片

 

项目地址:https://Github.com/nebuly-ai/nebullvm/tree/main/Apps/accelerate/chatllama

ChatLLaMA 训练过程算法实现主打比 ChatGPT 训练更快、更便宜,我们可以从以下四点得到验证:

  • ChatLLaMA 是一个完整的开源实现,允许用户基于预训练的 LLaMA 模型构建 ChatGPT 风格的服务;
  • 与 ChatGPT 相比,LLaMA 架构更小,但训练过程和单 GPU 推理速度更快,成本更低;
  • ChatLLaMA 内置了对 DeepSpeed ZERO 的支持,以加速微调过程;
  • 该库还支持所有的 LLaMA 模型架构(7B、13B、33B、65B),因此用户可以根据训练时间和推理性能偏好对模型进行微调。

 

图片

 

图源:https://OpenAI.com/blog/chatgpt

更是有研究者表示,ChatLLaMA 比 ChatGPT 训练速度最高快 15 倍。

 

图片

 

不过有人对这一说法提出质疑,认为该项目没有给出准确的衡量标准。

 

图片

 

项目刚刚上线 2 天,还处于早期阶段,用户可以通过以下添加项进一步扩展:

  • 带有微调权重的 Checkpoint;
  • 用于快速推理的优化技术;
  • 支持将模型打包到有效的部署框架中。

Nebuly AI 希望更多人加入进来,创造更高效和开放的 ChatGPT 类助手。

该如何使用呢?首先是使用 pip 安装软件包:

pip install chatllama-py然后是克隆 LLaMA 模型:
git clone https://github.com/facebookresearch/llama.gitcd llama
pip install -r requirements.txt
pip install -e .

一切准备就绪后,就可以运行了,项目中介绍了 ChatLLaMA 7B 的训练示例,感兴趣的小伙伴可以查看原项目。



Tags:ChatGPT   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
ChatGPT官宣免注册,全球互联网变天!OpenAI将取代谷歌搜索?
新智元报道编辑:编辑部【新智元导读】OpenAI这份愚人节礼物,实在是太大了:今天起,ChatGPT不用注册,可以直接使用。用户狂欢,竞品颤抖,我们仿佛已经听到,谷歌搜索引擎这位巨人轰然倒...【详细内容】
2024-04-02  Search: ChatGPT  点击:(9)  评论:(0)  加入收藏
无需注册!OpenAI宣布放开ChatGPT使用限制
工智能初创公司OpenAI宣布,即日起用户无须注册即可开始使用ChatGPT的功能。OpenAI在最新公告中写道:“让ChatGPT等工具广泛可用,让人们能够体验到人工智能的好处,这是我们使命的...【详细内容】
2024-04-02  Search: ChatGPT  点击:(7)  评论:(0)  加入收藏
ChatGPT 突然放开了账户限制,面向所有人开放
大门终于打开。奥特曼 OpenAI 的旗舰产品 ChatGPT 突然宣布:将面向所有人开放,无论你有没有注册账户。从今天开始,访问 Chat.openai.com 将不再要求用户登录,用户将直接进入与 C...【详细内容】
2024-04-02  Search: ChatGPT  点击:(3)  评论:(0)  加入收藏
今天起,ChatGPT无需注册就能用了!
 来源:量子位    金磊 克雷西 发自 凹非寺  就在刚刚,OpenAI狠狠地open了一把:从今天起,ChatGPT打开即用,无需再注册帐号和登录了!  像这样,直接登录网站,然后就可以开启对...【详细内容】
2024-04-02  Search: ChatGPT  点击:(8)  评论:(0)  加入收藏
ChatGPT之父Altman两小时对谈,首聊GPT-5何时发布、llya去哪里了、Q*究竟是什么
Altman做客油管博主Lex Fridman科技博客 ,被追问了一个又一个辛辣的问题。长达两个小时的对谈,奥特曼从OpenAI宫斗、马斯克诉讼、Sora,一直聊到AGI与外星文明!本文重点梳理了长...【详细内容】
2024-03-20  Search: ChatGPT  点击:(8)  评论:(0)  加入收藏
ChatGPT主管最新访谈:未来AI和人类如何共处?
Peter Deng在最新访谈中表示:AI不会取代生产力,人类和AI只有合作才能释放真正潜力,ChatGPT比已知的更强大、最大的挑战在于理解用户需求。当地时间3月13日,OpenAI 消费产品副总...【详细内容】
2024-03-19  Search: ChatGPT  点击:(11)  评论:(0)  加入收藏
ChatGPT日耗电超50万度,大模型或带来“电荒”
未来两年内将由“缺硅”变为“缺电”,马斯克的预言可能正在变成现实。据《纽约客》杂志报道,OpenAI的热门聊天机器人ChatGPT每天可能要消耗超过50万千瓦时的电力,以响应用户的...【详细内容】
2024-03-11  Search: ChatGPT  点击:(32)  评论:(0)  加入收藏
OpenAI新功能:ChatGPT可调用自定义机器人,对话更高效!
近日,知名科技公司OpenAI推出了一项新的功能——“对话中调用(@)自定义聊天机器人”,让用户在对话中无缝切换不同领域的机器人。这一功能的出现,为用户带来了极大的便...【详细内容】
2024-02-02  Search: ChatGPT  点击:(53)  评论:(0)  加入收藏
ChatGPT元年之后,AI重塑世界,人类如何与其“智慧共生”?
过去一年,人工智能(AI)凭借大语言模型的爆火迅速进入大众视野。它比以往任何时候都更强大,也更具亲和力。这不仅给未来生活带来了新希望,也在人们心中蒙上了一层担忧—&mdas...【详细内容】
2024-01-26  Search: ChatGPT  点击:(77)  评论:(0)  加入收藏
年度最热AI应用TOP 50,除了ChatGPT还有这么多宝藏
量子位 | 公众号 QbitAI百模齐发、AI工具乱杀的一年里,谁是真正赢家?ChatGPT访问量遥遥领先位居第一,但单次使用时长没超过平均线。Midjourney访问量年度第四,但下滑量位居第二...【详细内容】
2024-01-02  Search: ChatGPT  点击:(55)  评论:(0)  加入收藏
▌简易百科推荐
行业大模型快速落地的一年,如何做?
生成式AI正成为时下科技企业“讲故事”的关键词之一。但从发展上看,无论是“文生文”的大语言模型,还是“文生图”的多模态模型,更多的是辅助人们进行一些简单的办公,或者提供一...【详细内容】
2024-04-10    钛媒体APP  Tags:行业大模型   点击:(3)  评论:(0)  加入收藏
互联网充斥“针对小白的AI课”,能相信吗?普通人不学AI课程会被淘汰?
早前,一位标榜清华大学博士和多家公司AI顾问名头的百万级粉丝量博主,向用户大力推介“所有人都需要学”的AI入门课程。不过,这些课程最终因贩卖焦虑、蒙骗学员而被平台下架。然...【详细内容】
2024-04-10    九派新闻  Tags:AI课   点击:(7)  评论:(0)  加入收藏
藏在AI背后的“吃电狂魔”
人工智能时代的能耗黑洞据估算,到2027年,人工智能行业每年将消耗85~134太瓦时的电力,相当于瑞典或荷兰一年的总用电量。马斯克判断,电力缺口最早可能会在2025年发生,“明年你会看...【详细内容】
2024-04-09    雪豹财经社  Tags:AI   点击:(3)  评论:(0)  加入收藏
OpenAI和谷歌再起纷争:AI的尽头是内容
日前,纽约时报的一篇报道称,人工智能公司 OpenAI为收集高质量训练数据而开发了一个语音转录模型Whisper。该模型主要用于转录 OpenAI 获取的超过 100 万小时的 YouTube 视频,也...【详细内容】
2024-04-09  小编也疯狂  新浪网  Tags:AI   点击:(3)  评论:(0)  加入收藏
AI产业的灰色暗面:OpenAI、谷歌、META如何搞训练语料
财联社4月7日讯(编辑 史正丞)种种迹象显示,目前站在全世界AI领域潮头浪尖的这些公司,早在几年前就已经陷入对训练语料的“绝望”追逐中——为此他们不惜修改政策条款...【详细内容】
2024-04-09    财联社  Tags:AI产业   点击:(4)  评论:(0)  加入收藏
和“数字人”交朋友,当心隐私被出卖......
在虚拟社交中如何在保护用户隐私和数据安全的同时提供高质量的社交体验?如何避免过度依赖虚拟社交找到虚拟与真实之间的平衡点?《中国消费者报》记者就此展开了调查APP里有个...【详细内容】
2024-04-09    中国消费者报  Tags:数字人   点击:(6)  评论:(0)  加入收藏
AI“复活”成产业链:成本可降至数百元
大模型应用落地,带火数字人(11.560, 0.29, 2.57%)赛道。文|《中国企业家》记者李艳艳 实习生 孙欣编辑|姚赟头图来源|《流浪地球2》电影画面截图清明节前,预估会有需求的庞立...【详细内容】
2024-04-09    中国企业家  Tags:AI“复活”   点击:(3)  评论:(0)  加入收藏
多方热议人工智能产业新机遇
编者按  从前沿科技展会到高层对话平台,从上海、重庆到博鳌,从线上到线下……一场场高规格、大规模的盛会中,人工智能正在成为各界热议的高频词。赋能千...【详细内容】
2024-04-08    中国家电网  Tags:人工智能   点击:(5)  评论:(0)  加入收藏
​人形机器人时代来了吗
日前,由中国人形机器人(11.080, -0.05, -0.45%)百人会主办的人形机器人大赛在北京经济技术开发区开赛。工作人员向参观者展示一款人形机器人。参观者与一款陪护型人形机器人...【详细内容】
2024-04-08    中国青年报  Tags:​人形机器人   点击:(6)  评论:(0)  加入收藏
AI重塑社交:腾讯与字节跳动的新赛场
文|新火种 一号编辑|美美最近,腾讯和字节跳动这两大互联网巨头几乎同步推出了各自的AI社交产品,尽管腾讯和字节跳动在前段时间刚刚“破冰”,但这一举措不仅意味着这两大巨头之...【详细内容】
2024-04-07    蓝鲸财经  Tags:AI   点击:(8)  评论:(0)  加入收藏
站内最新
站内热门
站内头条